Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues.

نویسندگان

  • Xiaohong Zhu
  • Gad Galili
چکیده

The functional role of Lys catabolism in balancing Lys levels in plants has only been directly demonstrated in developing seeds. Seed-specific expression of a bacterial feedback-insensitive dihydrodipicolinate synthase (DHPS) in an Arabidopsis knockout mutant of the AtLKR/SDH gene that regulates Lys catabolism synergistically boosted Lys accumulation in mature seeds, but it also severely reduced the growth of seedlings derived from them. Here we further tested whether the inhibition of seedling growth was due to a negative physiological effect of excess Lys on seed maturation or to defective postgermination catabolism of Lys, which accumulated in the mature seeds. To address these questions, we coexpressed a bacterial DHPS gene with an RNAi construct of AtLKR/SDH, both under control of the same seed-specific promoter, to restrict Lys synthesis and catabolism to the developing seeds. Coexpression of these genes boosted seed Lys content and caused a significant, metabolically unanticipated increase in Met content, similarly to our previous report using plants expressing the bacterial DHPS on an AtLKR/SDH knockout background. However, postgermination seedling growth was significantly improved when the reduction of Lys catabolism was restricted to seed development, suggesting that defective postgermination Lys catabolism was responsible for inhibition of seedling growth in the AtLKR/SDH knockout plants expressing the bacterial DHPS gene in a seed-specific manner. Constitutive expression of the bacterial DHPS in the AtLKR/SDH knockout mutant boosted Lys levels in vegetative tissues in a similar manner to that observed in seeds, further demonstrating that Lys catabolism plays an important regulatory role in balancing Lys levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous auxin biosynthesis and de novo root organogenesis

A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. Malvar TM. 2008. Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. 1995. The lysine-dependent stimulation of lysine catabolism in tobacco seed requires calcium and protein-phosphorylation. Expression of de novo h...

متن کامل

Oxidative stress and protein catabolism following dexamethasone and isoflupredone administration in Holstein calves

Background: Glucocorticoids have several benefits in large animal medicine but apart from their benefits, there are several disadvantages attributed to the use of these drugs. Among the disadvantages, disturbance in protein metabolism is one of the side effects of glucocorticoids which has been investigated in human and laboratory animals. OBJECTIVES: There are no information regarding the effe...

متن کامل

O-29: Aberrant Methylation of Lysine 9 on Histone 3 in PII Promoter of CYP19A1 Gene in Women with Endometriosis

Background Cytochrome aromatase p450, encoded by the gene CYP19A1, is a key enzyme for estrogen biosynthesis. Among the multiple promoters of CYP19A1, the proximal promoter PII is the most active ones in ovary and endometrium. Endometriosis is a chronic estrogen dependent gynecological condition characterized by the presence of ectopic glands and stroma outside the uterine cavity. Recently, evi...

متن کامل

NEP, ACE and Homologues: The Pathophysiology of Membrane Metalloproteases

The zinc metalloprotease, neprilysin (NEP), plays a role in the metabolism of cardiovascular, inflammatory and neuropeptides, including mitogenic peptides such as bombesin. In the cardiovascular system, NEP has a primary role in the inactivation of natriuretic peptides but also contributes to local metabolism of angiotensin, endothelins and bradykinin. Hence NEP is seen as a potential therapeut...

متن کامل

Association of serum melatonin and albumin with cardiovascular disease

Cardiovascular diseases are a major cause of death worldwide.  Endothelial dysfunction, inflammatory conditions, and oxidative stress at the forefront of the onset and progression of most cardiovascular diseases specificaly coronary heart disease and heart failure. Melatonin is a type of indole neuroendocrine hormone.  It was first found that the regulation of the sleep-wake cycle is regulated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 135 1  شماره 

صفحات  -

تاریخ انتشار 2004